Chronic stress accelerates glioblastoma progression via DRD2/ERK/β-catenin axis and Dopamine/ERK/TH positive feedback loop

Author:

Wang Yan,Wang Xiang,Wang Kai,Qi Ji,Zhang Yu,Wang Xu,Zhang Long,Zhou Yi,Gu Linbo,Yu Rutong,Zhou XiupingORCID

Abstract

Abstract Background After diagnosis, glioblastoma (GBM) patients undertake tremendous psychological problems such as anxiety and depression, which may contribute to GBM progression. However, systematic study about the relationship between depression and GBM progression is still lacking. Methods Chronic unpredictable mild stress and chronic restrain stress were used to mimic human depression in mice. Human GBM cells and intracranial GBM model were used to assess the effects of chronic stress on GBM growth. Targeted neurotransmitter sequencing, RNA-seq, immunoblotting and immunohistochemistry were used to detect the related molecular mechanism. Results Chronic stress promoted GBM progression and up-regulated the level of dopamine (DA) and its receptor type 2 (DRD2) in tumor tissues. Down-regulation or inhibition of DRD2 abolished the promoting effect of chronic stress on GBM progression. Mechanistically, the elevated DA and DRD2 activated ERK1/2 and consequently inhibited GSK3β activity, leading to β-catenin activation. Meanwhile, the activated ERK1/2 up-regulated tyrosine hydroxylase (TH) level in GBM cells and then promoted DA secretion, forming an autocrine positive feedback loop. Remarkably, patients with high-depression exhibited high DRD2 and β-catenin levels, which showed poor prognosis. Additionally, DRD2 specific inhibitor pimozide combined with temozolomide synergistically inhibited GBM growth. Conclusions Our study revealed that chronic stress accelerates GBM progression via DRD2/ERK/β-catenin axis and Dopamine/ERK/TH positive feedback loop. DRD2 together with β-catenin may serve as a potential predictive biomarker for worse prognosis as well as therapeutic target of GBM patients with depression.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3