In vivo confocal microscopy evaluation of infiltrated immune cells in corneal stroma treated with cell therapy in advanced keratoconus

Author:

El Zarif Mona,Abdul Jawad Karim,Alió Jorge L.,Makdissy Nehman,De Miguel María P.

Abstract

Abstract Purpose This study investigates immune cell (ICs) infiltration in advanced keratoconus patients undergoing autologous adipose-derived adult stem cell (ADASC) therapy with recellularized human donor corneal laminas (CL). Methods A prospective clinical trial included fourteen patients divided into three groups: G-1, ADASCs; G-2, decellularized CL (dCL); and G-3, dCL recellularized with ADASCs (ADASCs-rCL). Infiltrated ICs were assessed using in vivo confocal microscopy (IVCM) at 1,3,6, and12 months post-transplant. Results Infiltrated ICs, encompassing granulocytes and agranulocytes, were observed across all groups, categorized by luminosity, structure, and area. Stromal ICs infiltration ranged from 1.19% to 6.62%, with a consistent increase in group-related cell density (F = 10.68, P < .0001), independent of post-op time (F = 0.77, P = 0.511); the most substantial variations were observed in G-3 at 6 and 12 months (2.0 and 1.87-fold, respectively). Similarly, significant size increases were more group-dependent (F = 5.76, P < .005) rather than time-dependent (F = 2.84, P < .05); G-3 exhibited significant increases at 6 and 12 months (3.70-fold and 2.52-fold, respectively). A lamina-induced shift in IC size occurred (F = 110.23, P < .0001), primarily with 50–100 μm2 sizes and up to larger cells > 300μm2, presumably macrophages, notably in G-3, indicating a potential role in tissue repair and remodeling, explaining reductions in cells remnants < 50μm2. Conclusions ADASCs-rCL therapy may lead to increased IC infiltration compared to ADASCs alone, impacting cell distribution and size due to the presence of the lamina. The findings reveal intricate immune patterns shaped by the corneal microenvironment and highlight the importance of understanding immune responses for the development of future therapeutic strategies.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3