AMPK activation enhances osteoblast differentiation on a titanium disc via autophagy

Author:

Egashira Kei,Kajiya HiroshiORCID,Tsutsumi Takashi,Taniguchi Yusuke,Kakura Kae,Ohno Jun,Kido Hirofumi

Abstract

Abstract Purpose The acquisition of osseointegration during implant therapy is slower and poorer in patients with diabetes compared with healthy persons. The serum concentration of adiponectin in patients with type II diabetes is lower than that of healthy persons via the suppression of AMP-activated protein kinase (AMPK). Therefore, we hypothesized that the AMPK activation enhances bone formation around implants, resulting in the improved acquisition of osseointegration. The purpose of this study was to evaluate the impact of AMPK activation on osteoblast differentiation and its mechanism of downstream signaling on titanium disc (Ti). Methods Confluent mouse pre-osteoblasts (MC3T3-E1) cells (1 × 105 cells/well) were cultured with BMP-2 for osteoblast differentiation, in the presence or absence AICAR, an AMPK activator. We examined the effects of AMPK activation on osteoblast differentiation and the underlying mechanism on a Ti using a CCK8 assay, a luciferase assay, quantitative RT-PCR, and western blotting. Results Although the proliferation rate of osteoblasts was not different between a Ti and a tissue culture polystyrene dish, the addition of AICAR, AMPK activator slightly enhanced osteoblast proliferation on the Ti. AICAR enhanced the BMP-2-dependent transcriptional activity on the Ti, leading to upregulation in the expression of osteogenesis-associated molecules. AICAR simultaneously upregulated the expression of autophagy-associated molecules on the Ti, especially LC3-II. AdipoRon, an adiponectin receptor type1/type2 activator activated AMPK, and upregulated osteogenesis-associated molecules on Ti. Conclusions AMPK activation enhances osteoblast differentiation on a Ti via autophagy, suggesting that it promotes the acquisition of osseointegration during implant therapy.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3