Abstract
Abstract
Purpose
The objective of the present study was to ascertain the effect of immediate occlusal loading after implant placement on osseointegration and the micro/nanostructure of the surrounding bone.
Methods
After extraction of a rat maxillary right second molar, an implant was placed immediately with initial fixation (2 N< ). The implants were placed to avoid occlusal loading due to mastication, and in the loaded group, a superstructure was fabricated and subjected to occlusal loading. Bone morphometry, collagen fiber anisotropy, and biological apatite (BAp) crystallite alignment were quantitatively evaluated in both groups after extraction and fixation of the jaw bone at Days 7 and 21 after surgery.
Results
Osseointegration was observed in both groups. Bone morphometry showed significant differences in bone volume, trabecular number, trabecular thickness and bone mineral density (BMD) at Days 21 postoperatively (P < 0.05). A significant difference was also found in the trabecular separation at Days 7 postoperatively (P < 0.05). In the evaluation of collagen fiber anisotropy, collagen fiber bundles running differently from the existing bone were observed in both groups. In terms of BAp crystallite alignment, a specific structure was observed in the reconstructed new bone after implantation, and preferential orientation of BAp crystallite alignment was observed in the longitudinal direction of the implants in the Day 21 postoperative loaded group.
Conclusion
When sufficient initial fixation is achieved at the time of dental implant placement, then the applied masticatory load may contribute to rapidly achieving not only bone volume, but also adequate bone quality after implant placement.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399–410. https://doi.org/10.1016/s0022-3913(83)80101-2.
2. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(2):96–101. https://doi.org/10.1007/s005860100282.
3. Esposito M, Grusovin MG, Maghaireh H, Worthington HV. Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev. 2013;2013(3):CD003878. https://doi.org/10.1002/14651858.CD003878.pub5.
4. Heinemann F, Hasan S, Bourauel C, Biffar R, Mundt T. Bone stability around dental implants: treatment related factors. Ann Anat. 2015;199:3–8. https://doi.org/10.1016/j.aanat.2015.02.004.
5. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.