Carrier RNA is a key factor affecting fully integrated short tandem repeats profiling in challenging forensic samples models

Author:

El-Shorbagy Haidan M.ORCID,El-Liethy Shereen S.,Moussa Mona K.,Elghor Akmal A.

Abstract

Abstract Background Short tandem repeats (STRs) are used today to provide discriminatory power for DNA fingerprinting. The present results showed that different factors may affect STR profiles in challenging samples including DNA quantity, DNA quality, PCR inhibitors and storage time. In the present study, blood stain samples were applied on two types of fabrics (black cotton and denim) to compare the efficiency of two different DNA-extraction methods (automated magnetic based beads method (EZ1), and manual organic method), with and without adding carrier RNA molecules, and to assess the quality and quantity of the extracted DNA and their capabilities for producing reportable STR-profiles in the presence of PCR inhibitors at two different storage times. Results Carrier RNA caused a dramatic increase in DNA recovery from black cotton or denim using EZ1 in contrast to organic method. EZ1 was found to be preferred than organic, especially when a time passed over, while organic method was preferred when samples are available in small quantities. In addition, using carrier RNA within the organic method steps showed no improvement in STR profiling. EZ1 with carrier RNA was preferred for bloodstained samples on fabrics with textile dyes (black dye or denim indigo), especially when stored for a long time. Conclusions Denim was found to be more problematic than black cotton due to presence of challenging inhibitors (indigo dye). DNA concentration, storage time and types of fabrics are key factors for choosing the appropriate extraction method for reportable STR profile. Using EZ1 with carrier RNA gives less dropout profile than not using it, or when using organic method even in presence or absence of carrier RNA. Anyway, innovation of more sensitive, more robust analytical protocols could result in a better understanding of these inhibitory samples.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3