Comprehensive analysis of geographic and breed-purpose influences on genetic diversity and inherited disease risk in the Doberman dog breed

Author:

Wade Claire M.ORCID,Nuttall Robin,Liu Sophie

Abstract

Abstract Background Publicly available phenotype data and genotyping array data from two citizen science projects: “Doberman Health Surveys” and “The Doberman Diversity Project” were analyzed to explore relative homozygosity, diversity, and disorder risk according to geographical locale and breeding purpose in the Doberman. Results From the phenotypic data cohort, life expectancy of a Doberman at birth is 9.1 years. The leading causes of death were heart disease (accounting for 28% of deaths) and cancers (collectively accounting for 14% of deaths). By genotyping, the world Doberman population exists as four major cohorts (European exhibition-bred, Americas exhibition-bred, European work, Americas pet/informal). Considering the entire Doberman population, four genomic regions longer than 500 Kb are fixed in 90% or more of 3,226 dogs included in this study. The four fixed regions reside on two autosomal chromosomes: CFA3:0.8–2.3 Mb (1.55 Mb); CFA3: 57.9–59.8 Mb (1.8 Mb); CFA31:0–1.2 Mb (1.2 Mb); and CFA31:4.80–6.47 Mb (1.67 Mb). Using public variant call files including variants for eight Doberman pinschers, we observed 30 potentially functional alternate variants that were evolutionarily diverged relative to the wider sequenced dog population within the four strongly homozygous chromosomal regions. Effective population size (Ne) is a statistical measure of breed diversity at the time of sampling that approximates the number of unique individuals. The major identified sub-populations of Dobermans demonstrated Ne in the range 70–236. The mean level of inbreeding in the Doberman breed is 40% as calculated by the number of array variants in runs of homozygosity divided by the assayed genome size (excluding the X chromosome). The lowest observed level of inbreeding in the Dobermans assayed was 15% in animals that were first generation mixes of European and USA bred Dobermans. Array variant analysis shows that inter-crossing between European and USA-bred Dobermans has capacity to re-introduce variation at many loci that are strongly homozygous. Conclusions We conclude that efforts to improve breed diversity first should focus on regions with the highest fixation levels, but managers must ensure that mutation loads are not worsened by increasing the frequencies of rarer haplotypes in the identified regions. The analysis of global data identified regions of strong fixation that might impact known disorder risks in the breed. Plausible gene candidates for future analysis of the genetic basis of cardiac disease and cancer were identified in the analysis.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3