Decreased expression of H19/miR-675 ameliorates muscle atrophy by regulating the IGF1R/Akt/FoxO signaling pathway

Author:

Zhang He,Wang Fei,Pang Xiangsheng,Zhou Yue,Li Shiming,Li Wenjiong,Zhang PengORCID,Chen Xiaoping

Abstract

Abstract Background Long non-coding RNA (lncRNA) H19 is one of the most highly expressed and conserved transcripts in mammalian development, and its functions have been fully discussed in many contexts including tumorigenesis and skeletal muscle development. However, its exact role in muscle atrophy remains largely unknown. This study investigated the effect of lncRNA H19 on muscle atrophy and the potential underlying mechanism. Methods Hindlimb suspension (HS) of C57BL/6 mice and starvation of C2C12 cells with PBS were conducted to induce atrophy. Real-time PCR and Western blotting were used to measure the expression of RNAs and proteins. LncRNA H19 and its encoded miR-675 were overexpressed or inhibited in different models of muscle atrophy. Immunofluorescence was carried out to examine the cross-sectional area (CSA) and minimal Feret’s diameter (MFD) of myofibers and myotube diameter. Results The expression levels of lncRNA H19 and miR-675 were significantly reduced in both the soleus and gastrocnemius muscles in response to HS. Overexpression of lncRNA H19 led to an increase in Atrogin-1 mRNA expression, and this effect was reversed by inhibiting miR-675. The overexpression of miR-675 aggravated both HS- and starving-induced muscle atrophy by inhibiting the IGF1R/Akt signaling pathway and promoting FoxO/Atrogin-1 expression. Conversely, miR-675 inhibition had the opposite effects. Conclusion The lncRNA H19/miR-675 axis can induce muscle atrophy, and its downregulation in mice with HS-induced muscle atrophy may act as a protective mechanism against this condition.

Funder

National Natural Science Foundation of China

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center

Space Medical Experiment Project of China Manned Space Program

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3