Therapeutic effects of engineered exosome-based miR-25 and miR-181a treatment in spinocerebellar ataxia type 3 mice by silencing ATXN3

Author:

Tang Zhenchu,Hu Shenglan,Wu Ziwei,He MiaoORCID

Abstract

Abstract Background Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia worldwide, which is however in a lack of effective treatment. In view of that engineered exosomes are a promising non-invasive gene therapy transporter that can overcome the traditional problem of poor drug delivery, the aim of this study was to evaluate, for the first time, the value of exosome-based microRNA therapy in SCA3 and the therapeutic effects of intravenously administrated ATXN3 targeting microRNAs in transgenic SCA3 mouse models. Methods The rabies virus glycoprotein (RVG) peptide–modified exosomes loaded with miR-25 or miR-181a were peripherally injected to enable targeted delivery of miRNAs to the brain of SCA3 mice. The behaviors, ATXN3 level, purkinje cell and other neuronal loss, and neuroinflammation were evaluated 4 weeks after initial treatment. Results The targeted and efficient delivery of miR-25 and miR-181a by modified exosomes substantially inhibited the mutant ATXN3 expression, reduced neuron apoptosis and induced motor improvements in SCA3 mouse models without increasing the neuroinflammatory response. Conclusions Our study confirmed the therapeutic potential of engineered exosome-based miR-25 and miR-181a treatment in substantially reducing ATXN3 aggregation and cytotoxicity by relying on its targeted and efficient drug delivery performance in SCA3 mice. This treatment method shows a promising prospect for future clinical applications in SCA3.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Huxiang High-Level Talent Gathering Project of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3