PINK1 protects against dendritic cell dysfunction during sepsis through the regulation of mitochondrial quality control

Author:

Wu You,Chen Longwang,Qiu Zhimin,Zhang Xijing,Zhao Guangju,Lu ZhongqiuORCID

Abstract

Abstract Background Dendritic cell (DC) dysfunction plays a central role in sepsis-induced immunosuppression. Recent research has indicated that collective mitochondrial fragmentation contributes to the dysfunction of immune cells observed during sepsis. PTEN-induced putative kinase 1 (PINK1) has been characterized as a guide for impaired mitochondria that can keep mitochondrial homeostasis. However, its role in the function of DCs during sepsis and the related mechanisms remain obscure. In our study, we elucidated the effect of PINK1 on DC function during sepsis and its underlying mechanism of action. Methods Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) treatment were used as in vivo and in vitro sepsis models, respectively. Results We found that changes in mitochondrial PINK1 expression of DCs paralleled changes in DC function during sepsis. The ratio of DCs expressing MHC-II, CD86, and CD80, the mRNAs level of dendritic cells expressing TNF-α and IL-12, and the level of DC-mediated T-cell proliferation were all decreased, both in vivo and in vitro during sepsis, when PINK1 was knocked out. This suggested that PINK1 knockout prevented the function of DCs during sepsis. Furthermore, PINK1 knockout inhibited Parkin RBR E3 ubiquitin protein (Parkin)-dependent mitophagy and enhanced dynamin-related protein 1 (Drp1)-related mitochondrial fission, and the negative effects of PINK1 knockout on DC function following LPS treatment were reversed by Parkin activation and Drp1 inhibitor. Knockout of PINK1 also increased apoptosis of DCs and the mortality of CLP mice. Conclusion Our results indicated that PINK1 protected against DC dysfunction during sepsis through the regulation of mitochondrial quality control.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3