microRNA-195 attenuates neuronal apoptosis in rats with ischemic stroke through inhibiting KLF5-mediated activation of the JNK signaling pathway

Author:

Chang Lisha,Zhang Wan,Shi Songxin,Peng Yanbo,Wang Dali,Zhang Li,Zhang Jiang

Abstract

Abstract Background Accumulating evidence has implicated the regulation of microRNAs (miRs) in ischemia stroke. The current study aimed to elucidate the role of microRNA-195 (miR-195) in neuronal apoptosis and brain plasticity in rats with ischemic stroke via the JNK signaling pathway/KLF5 axis. Methods Ischemic stroke rat models were established by middle cerebral artery occlusion (MCAO), and oxygen deprivation (OGD) models were constructed in rat neuronal cells, followed by gain- or loss-of-function of miR-195 and/or KLF5 in rats and cells. Infarct volume, neuronal loss and ultrastructure, the expression of GAP-43, SYP and KLF5 protein as well as cell apoptosis were determined in the rats. Caspase-3 activity as well as the expression of miR-195, KLF5, GAP-43, SYP, JNK, phosphorylated JNK, Bax and Bcl-2 was measured in the cells. Results The infarct size, expression of GAP-43 and SYP protein and apoptotic cells were increased in the miR-195−/− MCAO rats, while reductions were detected in the miR-195 mimic MCAO and KLF5−/− MCAO rats. Bcl-2 expression was increased, Bax and Caspase-3 expression as well as the ratio of phosphorylated JNK/JNK was decreased in response to miR-195 overexpression or KLF5 knockdown. Interestingly, the silencing of KLF5 reversed the effects exerted by the miR-195 inhibitor on the expression of Bcl-2, phosphorylated JNK/JNK, Bax and Caspase-3. Conclusions Collectively, our study unraveled that miR-195 could down-regulate KLF5 and block the JNK signaling pathway, ultimately inhibiting neuronal apoptosis in rats with ischemic stroke.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3