Abstract
AbstractTriosephosphate isomerase (TPI) is best known as a glycolytic enzyme that interconverts the 3-carbon sugars dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). TPI is an essential enzyme that is required for the catabolism of DHAP and a net yield of ATP from anaerobic glucose metabolism. Loss of TPI function results in the recessive disease TPI Deficiency (TPI Df). Recently, numerous lines of evidence suggest the TPI protein has other functions beyond glycolysis, a phenomenon known as moonlighting or gene sharing. Here we review the numerous functions ascribed to TPI, including recent findings of a nuclear role of TPI implicated in cancer pathogenesis and chemotherapy resistance.
Funder
Foundation for the National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献