MicroRNA regulation of the proliferation and apoptosis of Leydig cells in diabetes

Author:

Hu Li,Wei Shaochai,Wu Yuqi,Li Shulin,Zhu Pei,Wang XiangweiORCID

Abstract

Abstract Background The number of patients with diabetes is increasing worldwide. Diabetic testicular damage can cause spermiogenesis disorders and sexual dysfunction. We thus explored the role of miRNAs in diabetic testicular damage, and revealed that they could serve as effective prevention and treatment therapeutic targets. Methods Streptozotocin (STZ) was used to generate a rat model of type 2 diabetes. Rat testicular tissues were used for miRNA and mRNA sequencing. Through bioinformatics analysis, we constructed an miRNA–mRNA diabetic testicular damage regulatory network and screened for key miRNAs. We also used Leydig cells to generate a diabetic cell model and detected the downstream target genes of miRNAs, secretion of testosterone, and proliferation and apoptotic levels to elucidate the role and mechanism of the selected miRNAs in diabetic testicular damage. Results Using second-generation sequencing, we identified 19 differentially expressed miRNAs and 555 mRNAs in the testes of diabetic rats. Based on computational prediction of targets and negative regulation relationships, we constructed a miRNA–mRNA regulatory network, including 12 miRNAs and 215 mRNAs. KEGG enrichment analysis revealed that genes were more concentrated on the survival signalling pathway. Based on this, we screened 2 key miRNAs, miR-504 and miR-935. In vitro, glucose could induce an increase in miR-504 and miR-935, whereas a decrease in MEK5 and MEF2C in a dose-dependent manner. Overexpression of miR-504 and miR-935 led to the decreased expression of MEK5 and MEF2C, decreased proliferation rate of Leydig cells, increased apoptotic rate, and decreased secretion of testosterone. Whereas, knockdown of miR-504 and miR-935 displayed opposite tendencies. Conclusions miRNAs play important roles in diabetic testicular damage. miR-504 and miR-935 might regulate testicular damage through the classic survival pathway of MEK5-ERK5-MEF2C. Targeted inhibition of miR-504 and miR-935 could reverse the high-glucose-induced testicular complications, thus posing as a potential therapeutic approach in diabetic testicular injury.

Funder

Science and Technology Innovation Commission Foundation of Shenzhen

shenzhen key laboratory foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3