Menstrual blood-derived stromal cells: insights into their secretome in acute hypoxia conditions

Author:

de Pedro María ÁngelesORCID,Pulido María,Álvarez Verónica,Marinaro Federica,Marchena Ana María,Sánchez-Margallo Francisco MiguelORCID,Casado Javier G.,López Esther

Abstract

AbstractBackgroundDespite constant advances in regenerative medicine, the closure of chronic wounds is still challenging. Therapeutic approaches using locally administered MSCs have been considered a promising option. However, the viability of these cells is seriously threatened by acute hypoxic stress linked to wound healing. In this work, we aimed to study the tolerance of Menstrual blood-derived stromal cells (MenSCs) to acute hypoxia and their therapeutic paracrine effect.MethodsIsolated MenSCs were phenotypically characterized and evaluated in terms of proliferation, viability, and gene expression, under acute hypoxia (AH) compared with conventional cultured condition or normoxia (N). A step further, the secretome of MenSCs under acute hypoxia was analyzed with respect to their miRNAs content and by in vitro functional assays. For the analysis of differences between the two groups, Student’st-test was performed and one-way ANOVA and Tukey’s multiple comparisons test for multiple groups were used.ResultsOur results revealed that the viability of MenSCs was not affected under acute hypoxia, although proliferation rate slowed down. Gene analysis revealed 5 up-regulated (BNIP3,ANGPTL4,IL6,IL1B, andPDK1) and 4 down-regulated genes (IDO1,HMOX1,ANGPTL2, andHGF) in AH compared to N. Global gene expression analysis revealed a decrease in the gene ontology functions of migration and wound response with respect to the normoxic condition. In contrast, functions such as angiogenesis were enriched under the AH condition. Regarding the secretome analysis, two miRNAs involved in angiogenic processes (hsa-miR-148a-3p and hsa-miR-378a-3p), were significantly up-expressed when compared to the normoxic condition, beingMYCgene, the unique target of both. Functional assays on HUVECs revealed a potential pro-angiogenic capacity of MenSCs cultured in both oxygen conditions (N and AH) based on the wound closure and tube formation results of their released paracrine factors. However, when compared to normoxia, the paracrine factors of MenSCs under acute hypoxia slightly reduced the proliferation, migration, and in vitro wound closure of HUVECs.ConclusionsMenSC exhibited a good survival capacity under acute hypoxic conditions as well as beneficial properties applicable in the field of tissue regeneration through their secretome, which makes them a potential cell source for wound healing interventions.

Funder

Instituto de Salud Carlos III

Consejería de Economía, Ciencia y Agenda Digital, Junta de Extremadura

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3