Immune infiltration landscape and immune-marker molecular typing of pulmonary fibrosis with pulmonary hypertension

Author:

Cai Haomin,Liu Hongcheng

Abstract

Abstract Background Pulmonary arterial hypertension (PH) secondary to pulmonary fibrosis (PF) is one of the most common complications in PF patients, it causes severe disease and usually have a poor prognosis. Whether the combination of PH and PF is a unique disease phenotype is unclear. We aimed to screen the key modules associated with PH–PF immune infiltration based on WGCNA and identify the hub genes for molecular typing. Method Using the gene expression profile GSE24988 of PF patients with or without PH from the Gene Expression Omnibus (GEO) database, we evaluated immune cell infiltration using Cibersortx and immune cell gene signature files. Different immune cell types were screened using the Wilcoxon test; differentially expressed genes were screened using samr. The molecular pathways implicated in these differential responses were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. A weighted co-expression network of the differential genes was constructed, relevant co-expression modules were identified, and relationships between modules and differential immune cell infiltration were calculated. The modules most relevant to this disease were identified using weighted correlation network analysis. From these, we constructed a co-expression network; using the STRING database, we integrated the values into the human protein–protein interaction network before constructing a co-expression interaction subnet, screening genes associated with immunity and unsupervised molecular typing, and analyzing the immune cell infiltration and expression of key genes in each disease type. Results Of the 22 immune cell types from the PF GEO data, 20 different immune cell types were identified. There were 1622 differentially expressed genes (295 upregulated and 1327 downregulated). The resulting weighted co-expression network identified six co-expression modules. These were screened to identify the modules most relevant to the disease phenotype (the green module). By calculating the correlations between modules and the differentially infiltrated immune cells, extracting the green module co-expression network (46 genes), extracting 25 key genes using gene significance and module-membership thresholds, and combining these with the 10 key genes in the human protein–protein interaction network, we identified five immune cell-related marker genes that might be applied as biomarkers. Using these marker genes, we evaluated these disease samples using unsupervised clustering molecular typing. Conclusion Our results demonstrated that all PF combined with PH samples belonged to four categories. Studies on the five key genes are required to validate their diagnostic and prognostic value.

Funder

Natural Science Foundation of Shanghai, China

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3