Changes in the levels of free sialic acid during ex vivo lung perfusion do not correlate with pulmonary function. Experimental model

Author:

Hernández-Jiménez Claudia,Martínez-Cortés Javier,Olmos-Zuñiga J. Raúl,Jasso-Victoria Rogelio,López-Pérez María Teresa,Díaz-Martínez Néstor Emmanuel,Alonso-Gómez Marcelino,Guzmán-Cedillo Axel Edmundo,Baltazares-Lipp Matilde,Gaxiola-Gaxiola Miguel,Méndez-Bernal Adriana,Polo-Jeréz Adrián,Vázquez-Minero Juan Carlos,Hernández-Pérez Oscar,Fernández-Solís Christopher O.

Abstract

Abstract Background Ex vivo lung perfusion (EVLP) constitutes a tool with great research potential due to its advantages over in vivo and in vitro models. Despite its important contribution to lung reconditioning, this technique has the disadvantage of incurring high costs and can induce pulmonary endothelial injury through perfusion and ventilation. The pulmonary endothelium is made up of endothelial glycocalyx (EG), a coating of proteoglycans (PG) on the luminal surface. PGs are glycoproteins linked to terminal sialic acids (Sia) that can affect homeostasis with responses leading to edema formation. This study evaluated the effect of two ex vivo perfusion solutions on lung function and endothelial injury. Methods We divided ten landrace swine into two groups and subjected them to EVLP for 120 min: Group I (n = 5) was perfused with Steen® solution, and Group II (n = 5) was perfused with low-potassium dextran-albumin solution. Ventilatory mechanics, histology, gravimetry, and sialic acid concentrations were evaluated. Results Both groups showed changes in pulmonary vascular resistance and ventilatory mechanics (p < 0.05, Student’s t-test). In addition, the lung injury severity score was better in Group I than in Group II (p < 0.05, Mann–Whitney U); and both groups exhibited a significant increase in Sia concentrations in the perfusate (p < 0.05 t-Student) and Sia immunohistochemical expression. Conclusions Sia, as a product of EG disruption during EVLP, was found in all samples obtained in the system; however, the changes in its concentration showed no apparent correlation with lung function.

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3