Emodin inhibits viability, proliferation and promotes apoptosis of hypoxic human pulmonary artery smooth muscle cells via targeting miR-244-5p/DEGS1 axis

Author:

Yi Li,Liu JunFang,Deng Ming,Zuo Huihua,Li Mingyan

Abstract

Abstract Objective This study aimed to determine the effects of emodin on the viability, proliferation and apoptosis of human pulmonary artery smooth muscle cells (PASMCs) under hypoxia and to explore the underling molecular mechanisms. Methods PASMCs were cultured in a hypoxic environment (1% oxygen) and then treated with emodin. Cell viability, proliferation and apoptosis were evaluated using CCK-8 assay, EdU staining assay, western blot and Mito-tracker red CMXRos and Annexin V-FITC apoptosis detection assay. The microRNA (miRNA)/mRNA and protein expression levels were assessed by quantitative real-time PCR and western blotting, respectively. Based on transcriptomics and proteomics were used to identify potential signaling pathways. Luciferase reporter assay was utilized to examine the interaction between miR-244-5p and DEGS1. Results Emodin at 40 and 160 µM concentration-dependently suppressed cell viability, proliferation and migration, but enhanced cell apoptosis of PASMCs under hypoxia. Transcriptomic and proteomic analysis revealed that emodin could attenuate the activity of PI3K/Akt signaling in PASMCs under hypoxia. In addition, delta 4-desaturase, sphingolipid 1 (DEGS1) was found to be a direct target of miR-244-5p. Emodin could significantly up-regulated miR-244-5p expression and down-regulated DEGS1 expression in PASMCs under hypoxia. Furthermore, emodin-mediated effects on cell viability, migration, apoptosis and PI3K/Akt signaling activity of PASMCs under hypoxia were significantly attenuated by miR-244-5p knockdown. Conclusions Our results indicated that emodin suppressed cell viability, proliferation and migration, promoted cell apoptosis of PASMCs under hypoxia via modulating miR-244-5p-mediated DEGS1/PI3K/Akt signaling pathway. MiR-244-5p/DEGS1 axis was initially investigated in this current study, which is expected to further the understanding of the etiology of pulmonary arterial hypertension.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3