Pulmonary inflammation-induced alterations in key regulators of mitophagy and mitochondrial biogenesis in murine skeletal muscle

Author:

Leermakers Pieter A.ORCID,Remels Alexander H. V.,Langen Ramon C. J.,Schols Annemie M. W. J.,Gosker Harry R.

Abstract

Abstract Background Both mitophagy, a selective mechanism for clearance of mitochondria, and mitochondrial biogenesis are key processes determining mitochondrial content and oxidative capacity of the musculature. Abnormalities in these processes could therefore contribute to deterioration of peripheral muscle oxidative capacity as observed in e.g. chronic obstructive pulmonary disease. Although it has been suggested that inflammatory mediators can modulate both mitophagy and mitochondrial biogenesis, it is unknown whether acute pulmonary inflammation affects these processes in oxidative and glycolytic skeletal muscle in vivo. Therefore, we hypothesised that molecular signalling patterns of mitochondrial breakdown and biogenesis temporally shift towards increased breakdown and decreased biogenesis in the skeletal muscle of mice exposed to one single bolus of IT-LPS, as a model for acute lung injury and pulmonary inflammation. Methods We investigated multiple important constituents and molecular regulators of mitochondrial breakdown, biogenesis, dynamics, and mitochondrial content in skeletal muscle over time in a murine (FVB/N background) model of acute pulmonary- and systemic inflammation induced by a single bolus of intra-tracheally (IT)-instilled lipopolysaccharide (LPS). Moreover, we compared the expression of these constituents between gastrocnemius and soleus muscle. Results Both in soleus and gastrocnemius muscle, IT-LPS instillation resulted in molecular patterns indicative of activation of mitophagy. This coincided with modulation of mRNA transcript abundance of genes involved in mitochondrial fusion and fission as well as an initial decrease and subsequent recovery of transcript levels of key proteins involved in the molecular regulation of mitochondrial biogenesis. Moreover, no solid differences in markers for mitochondrial content were found. Conclusions These data suggest that one bolus of IT-LPS results in a temporal modulation of mitochondrial clearance and biogenesis in both oxidative and glycolytic skeletal muscle, which is insufficient to result in a reduction of mitochondrial content.

Funder

NUTRIM Graduate Programme

Netherlands Lung Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3