OsVPE2, a Member of Vacuolar Processing Enzyme Family, Decreases Chilling Tolerance of Rice

Author:

Deng Huabing,Cao Sai,Zhang Guilian,Xiao Yunhua,Liu Xiong,Wang Feng,Tang Wenbang,Lu Xuedan

Abstract

AbstractChilling is a major abiotic stress affecting rice growth, development and geographical distribution. Plant vacuolar processing enzymes (VPEs) contribute to the seed storage protein processing and mediate the programmed cell death by abiotic and biotic stresses. However, little is known about the roles of plant VPEs in cold stress responses and tolerance regulation. Here, we found that OsVPE2 was a chilling-responsive gene. The early-indica rice variety Xiangzaoxian31 overexpressing OsVPE2 was more sensitive to chilling stress, whereas the OsVPE2-knockout mutants generated by the CRISPR-Cas9 technology exhibited significantly enhanced chilling tolerance at the seedling stage without causing yield loss. Deficiency of OsVPE2 reduces relative electrolyte leakage, accumulation of toxic compounds such as reactive oxygen species and malondialdehyde, and promotes antioxidant enzyme activities under chilling stress conditions. It was indicated that OsVPE2 mediated the disintegration of vacuoles under chilling stress, accompanied by the entry of swollen mitochondria into vacuoles. OsVPE2 suppressed the expression of genes that have a positive regulatory role in antioxidant process. Moreover, haplotype analysis suggested that the natural variation in the OsVPE2 non-coding region may endow OsVPE2 with different expression levels, thereby probably conferring differences in cold tolerance between japonica and indica sub-population. Our results thus reveal a new biological function of the VPE family in regulating cold resistance, and suggest that the gene editing or natural variations of OsVPE2 can be used to create cold tolerant rice varieties with stable yield.

Funder

Hunan Science and Technology Innovation Program

National Natural Science Foundation of China

Science Research Excellent Youth Project of Hunan Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3