Convergent lines of evidence support BIN1 as a risk gene of Alzheimer’s disease

Author:

Zhu Jin,Liu Xia,Yin Hongtao,Gao Yan,Yu HaoORCID

Abstract

AbstractGenome-wide association studies (GWAS) have identified several susceptibility loci of Alzheimer’s disease (AD), which were mainly located in noncoding regions of the genome. Meanwhile, the putative biological mechanisms underlying AD susceptibility loci were still unclear. At present, identifying the functional variants of AD pathogenesis remains a major challenge. Herein, we first used summary data-based Mendelian randomization (SMR) with AD GWAS summary and expression quantitative trait loci (eQTL) data to identify variants who affects expression levels of nearby genes and contributed to the risk of AD. Using the SMR integrative analysis, we totally identified 14 SNPs significantly affected the expression level of 16 nearby genes in blood or brain tissues and contributed to the AD risk. Then, to confirm the results, we replicated the GWAS and eQTL results across multiple samples. Totally, four risk SNP (rs11682128, rs601945, rs3935067, and rs679515) were validated to be associated with AD and affected the expression level of nearby genes (BIN1, HLA-DRA, EPHA1-AS1, and CR1). Besides, our differential expression analysis showed that the BIN1 gene was significantly downregulated in the hippocampus (P = 2.0 × 10−3) and survived after multiple comparisons. These convergent lines of evidence suggest that the BIN1 gene identified by SMR has potential roles in the pathogenesis of AD. Further investigation of the roles of the BIN1 gene in the pathogenesis of AD is warranted.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Young Taishan Scholars of Shandong Province

Medical and Health Science and Technology Development Plan of Shandong Province

Supporting Fund for Teacher’s Research of Jining Medical University

Research Fund for Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical University

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3