Retinal photograph-based deep learning system for detection of hyperthyroidism: a multicenter, diagnostic study

Author:

Dong Li,Ju Lie,Hui Shiqi,Luo Lihua,Jiang Xue,Nie Zihan,Zhang Ruiheng,Zhou Wenda,Li Heyan,Jonas Jost B.,Wang Xin,Zhao Xin,He Chao,Chen Yuzhong,Wang Zhaohui,Gao Jianxiong,Ge Zongyuan,Wei Wenbin,Li DongmeiORCID

Abstract

Abstract Background Screening for hyperthyroidism using gold-standard diagnostic criteria in the general population is not cost-effective, leading to a relatively high rate of undiagnosed and untreated patients. This study aimed to establish a deep learning-based system to detect hyperthyroidism based on retinal photographs. Methods The multicenter, observational study included retinal photographs taken from participants in two hospitals and 24 health care centers throughout China. We first trained two models to identify hyperthyroidism: in model #1, the non-hyperthyroidism individuals were randomly selected, while in model #2, the non-hyperthyroidism group was matched for age and gender with the hyperthyroidism group. After internal validation, we selected the better model for further evaluation using external validation datasets. Results The study included 22,940 retinal photographs of 11,409 participants for the model development, and 3862 retinal photographs (1870 participants) which were obtained from two hospitals and four medical centers as the external validation datasets. Model #1 achieved a higher area under the receiver operator curve (AUC) than model #2 (0.907, 95% CI: 0.894–0.918 versus 0.850, 95% CI: 0.832–0.866) in the internal validation so that model #1 was used for further evaluation. In external datasets, model #1 reached AUCs ranging from 0.816 (95% CI 0.789–0.846) to 0.849 (95% CI 0.824–0.874) and achieved accuracies between 0.735 (95% CI 0.700–0.773) and 0.796 (95% CI 0.765–0.824). Heatmaps showed a focus of the DL-algorism on large fundus vessels and the optic nerve head. Conclusions Retinal fundus photographs may serve for DL systems for a cost-effective and non-invasive method to detect hyperthyroidism.

Funder

Research Foundation of Beijing Friendship Hospital, Capital Medical University

Capital Health Research and Development of Special Fund

Science & Technology Project of Beijing Municipal Science & Technology Commission

Beijing Municipal Administration of Hospitals’ Ascent Plan

National Natural Science Foundation of China

Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals Authority

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3