Examining ALS: reformed PCA and random forest for effective detection of ALS

Author:

Alqahtani Abdullah,Alsubai Shtwai,Sha Mohemmed,Dutta Ashit Kumar

Abstract

AbstractALS (Amyotrophic Lateral Sclerosis) is a fatal neurodegenerative disease of the human motor system. It is a group of progressive diseases that affects the nerve cells in the brain and spinal cord that control the muscle movement of the body hence, detection and classification of ALS at the right time is considered to be one of the vital aspects that can save the life of humans. Therefore, in various studies, different AI techniques are used for the detection of ALS, however, these methods are considered to be ineffectual in terms of identifying the disease due to the employment of ineffective algorithms. Hence, the proposed model utilizes Modified Principal Component Analysis (MPCA) and Modified Random Forest (MRF) for performing dimensionality reduction of all the potential features considered for effective classification of the ALS presence and absence of ALS causing mutation in the corresponding gene. The MPCA is adapted for capturing all the Low-Importance Data transformation. Furthermore, The MPCA is objected to performing three various approaches: Covariance Matrix Correlation, Eigen Vector- Eigenvalue decomposition, and selecting the desired principal components. This is done in aspects of implying the LI (Lower-Importance) Data Transformation. By choosing these potential components without any loss of features ensures better viability of selecting the attributes for ALS-causing gene classification. This is followed by the classification of the proposed model by using Modified RF by updating the clump detector technique. The clump detector is proceeded by clustering approach using K-means, and the data reduced by their dimension are grouped accordingly. These clustered data are analyzed either for ALS causing or devoid of causing ALS. Finally, the model’s performance is assessed using different evaluation metrics like accuracy, recall, F1 score, and precision, and the proposed model is further compared with the existing models to assess the efficacy of the proposed model.

Funder

King Salman Center for Disability Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3