Author:
Liu Hequn,Barnes Jesse,Pedrosa Erika,Herman Nathaniel S.,Salas Franklin,Wang Ping,Zheng Deyou,Lachman Herbert M.
Abstract
Abstract
Background
Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3′ end of the gene, and their neurotypical brothers to serve as controls.
Methods
In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs).
Results
In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies.
Conclusion
Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.
Funder
National Institute of Mental Health
National Institute of Child Health and Human Development
Lowe Syndrome Association
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health
Reference127 articles.
1. Silver DN, Lewis RA, Nussbaum RL. Mapping the Lowe oculocerebrorenal syndrome to Xq24-q26 by use of restriction fragment length polymorphisms. J Clin Invest. 1987;79(1):282–5.
2. Schurman SJ, Scheinman SJ. Inherited cerebrorenal syndromes. Nat Rev Nephrol. 2009;5(9):529–38.
3. Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta. 2015;1851(8):1066–82.
4. Staiano L, De Leo MG, Persico M, De Matteis MA. Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta. 2015;1851(6):867–81.
5. Lewis RA, Nussbaum RL, Brewer ED. Lowe syndrome. In GeneReviews(R). Edited by Adam MP, Ardinger HH, Pagon RA, et al. Seattle (WA): University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.