Structural heterogeneity assessment among the isoforms of fungal 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase: a comparative in silico perspective

Author:

Pramanik KrishnenduORCID,Mandal Narayan ChandraORCID

Abstract

Abstract Background The primary amino acid sequence of a protein is a translated version from its gene sequence which carries important messages and information concealed therein. The present study unveils the structure-function and evolutionary aspects of 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) proteins of fungal origin. ACCD, an important plant growth-promoting microbial enzyme, is less frequent in fungi compared to bacteria. Hence, an inclusive understanding of fungal ACC deaminases (fACCD) has brought forth here. Results In silico investigation of 40 fACCD proteins recovered from NCBI database reveals that fACCD are prevalent in Colletotrichum (25%), Fusarium (15%), and Trichoderma (10%). The fACCD were found 16.18–82.47 kDa proteins having 149–750 amino acid residues. The enzyme activity would be optimum in a wide range of pH having isoelectric points 4.76–10.06. Higher aliphatic indices (81.49–100.13) and instability indices > 40 indicated the thermostability nature. The secondary structural analysis further validates the stability owing to higher α-helices. Built tertiary protein models designated as ACCNK1–ACCNK40 have been deposited in the PMDB with accessions PM0083418–39 and PM0083476–93. All proteins were found as homo-dimer except ACCNK13, a homo-tetramer. Conclusions Hence, these anticipated features would facilitate to explore and identify novel variants of fungal ACCD in vitro aiming to industrial-scale applications.

Funder

University Grants Commission

Department of Science and Technology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3