Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells

Author:

Wang Hao,Dou Liping

Abstract

Abstract Background Myocardial infarction (MI) is a cardiovascular disease that seriously threatens human health. Dysangiogenesis of endothelial cells (ECs) primarily inhibits recovery from MI, but the specific mechanism remains to be further elucidated. Methods In this study, the single-cell RNA-sequencing data from both MI and Sham mice were analyzed by the Seurat Package (3.2.2). The number of ECs in MI and Sham groups were compared by PCA and tSNE algorithm. FindMarkers function of Seurat was used to analyze the DEGs between the MI and Sham groups. Then, the ECs was further clustered into 8 sub-clusters for trajectory analysis. The BEAM was used to analyze the branch point 3 and cluster the results. In addition, the DEGs in the microarray data set of MI and Sham mice were cross-linked, and the cross-linked genes were used to construct PPI networks. The key genes with the highest degree were identified and analyzed for functional enrichment. Finally, this study cultured human umbilical vein endothelial cells (HUVECs), established hypoxia models, and interfered with hub gene expression in cells. The impact of hub genes on the migration and tube formation of hypoxic-induced HUVECs were verified by Wound healing assays and tubule formation experiments. Results The number and proportion of ECs in the MI group were significantly lower than those in the Sham group. Meantime, 225 DEGs were found in ECs between the MI and Sham groups. Through trajectory analysis, EC4 was found to play an important role in MI. Then, by using BEAM to analyze the branch point 3, and clustering the results, a total of 495 genes were found to be highly expressed in cell Fate2 (mainly EC4). In addition, a total of 194 DEGs were identified in Micro array dataset containing both MI and Sham mice. The hub genes (Timp1 and Fn1) with the highest degree were identified. Inhibiting Timp1 and Fn1 expression promoted the migration and tube formation of HUVECs. Conclusions Our data highlighted the non-linear dynamics of ECs in MI, and provided a foothold for analyzing cardiac homeostasis and pro-angiogenesis in MI.

Funder

Traditional Chinese Medical Science and Technology Plan of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3