Allicin protects against LPS-induced cardiomyocyte injury by activating Nrf2-HO-1 and inhibiting NLRP3 pathways

Author:

Sun Fangyuan,Xu Kailiang,Zhou Jiayi,Zhang Wei,Duan Guihe,Lei Ming

Abstract

Abstract Background Allicin is a bioactive compound with potent antioxidative activity and plays a protective effect in myocardial damage and fibrosis. The role and mechanism of Allicin in septic cardiomyopathy are unclear. In this study, we investigated the effects and underlying mechanisms of Allicin on lipopolysaccharide (LPS) induced injury in H9c2 cardiomyocytes. Methods H9c2 cardiomyocyte cells were pretreated with Allicin (0, 25, 50, and 100 µM) for 2 h, followed by incubation with LPS (10 µg/mL) for 24 h at 37 °C. Cell viability (cell counting kit-8 [CCK-8]), apoptosis (TUNEL staining), oxidative stress (malondialdehyde [MDA] and superoxide dismutase [SOD]), and cytokines release (Interleukin beta [IL-β], Interleukin 6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) were determined. The mRNA and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NLR family pyrin domain containing 3 (NLRP3) signaling pathway molecules were quantified by real-time quantitative PCR (RT-qPCR) and western blot, respectively. Results Allicin had no effect on H9c2 cell viability but attenuated LPS-induced injury, with increased cell viability, reduction in inflammatory cytokines release, apoptosis, reduced MDA, and increased SOD (P < 0.05). Additionally, Allicin increased Nrf2 and cellular HO-1 expressions in LPS-treated H9c2 cells. Moreover, Allicin modulated the NLRP3 inflammasome, increased the cleaved caspase-1 (p10) protein, and attenuated the LPS-induced increase in NLRP3, pro-IL-1β, and IL-1β proteins. Silencing of Nrf2 by siRNA (siNrf2) significantly attenuated Allicin-induced increase in cell viability and HO-1 and decrease in NLRP3 protein in LPS-stimulated H9c2 cells. Conclusions Allicin protects cardiomyocytes against LPS‑induced injury through activation of Nrf2/HO-1 and inhibition of NLRP3 signaling pathways.

Funder

Pudong New Area Health System medical talent training plan

Three year action plan for Shanghai to further accelerate the inheritance, innovation and development of traditional Chinese Medicine

The National Natural Science Foundation of China

Key Laboratory of Emergency and Trauma(Hainan Medical University),Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Reference39 articles.

1. Vincent JL. The clinical challenge of sepsis identification and monitoring. PLoS Med. 2016;13(5):e1002022.

2. Tsiotou AG, Sakorafas GH, Anagnostopoulos G, Bramis J. Septic shock; current pathogenetic concepts from a clinical perspective. Med Sci Monit. 2005;11(3):RA76–RA85.

3. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of Disease Study. Lancet (London England). 2020;395(10219):200–11.

4. Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018;24(4):292–9.

5. Kong W, Kang K, Gao Y, Liu H, Meng X, Yang S, et al. Dexmedetomidine alleviates LPS-induced septic cardiomyopathy via the cholinergic anti-inflammatory pathway in mice. Am J Transl Res. 2017;9(11):5040–7.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3