REEP5 mediates the function of CLEC5A to alleviate myocardial infarction by inhibiting endoplasmic reticulum stress-induced apoptosis

Author:

Wang Xin,Sun Limin

Abstract

AbstractMI (myocardial infarction) often triggers severe heart failure and is one of the leading causes of death worldwide. Receptor expression-enhancing protein 5 (REEP5), a member of REEPs, acts as regulators of endoplasmic reticulum (ER) affecting cardiac functions. Based on GSE114695 profile data, REEP5 was decreased in the left ventricle of MI mice. However, its role and potential mechanism in MI remain to be investigated. In the present study, the mouse MI model was established by ligation of the left anterior descending artery. REEP5 expression was downregulated in the infarct penumbra area of MI mice. Next, its role during MI was explored by gain-of-function. Interestingly, REEP5 overexpression improved left ventricular function of mice with MI, accompanied with reduced infarct size. In cardiomyocytes, REEP5 overexpression inhibited ER stress, accompanied with repressive phosphorylation of PERK and IRE1α, and the decreased nuclear translocation of ATF6. Subsequently, REEP5 overexpression downregulated the levels of Chop and cleaved caspase-12, further alleviating ER stress-induced apoptosis, which was consistent with the in vivo results. Moreover, REEP5 was found to bind to C-type lectin member 5 A (CLEC5A), a protein that triggers cardiac dysfunction. CLEC5A, whose expression was elevated in hypoxia-induced cell models, led to cardiomyocyte apoptosis. Noteworthily, REEP5 overexpression markedly abolished the effects of CLEC5A on ER stress-induced apoptosis. Taken together, REEP5 mediated the function of CLEC5A to relieve MI via inhibiting ER stress-induced apoptosis in vivo and in vitro. REEP5 may be a promising target for treating MI.

Funder

Basic Scientific Research Project of Educational Department of Liaoning Province

Economic and Social Development Research Project of Liaoning Province

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3