Beta-Adrenergic Receptor Blockade Effects on Cardio-Pulmonary Exercise Testing in Healthy Young Adults: A Randomized, Placebo-Controlled Trial

Author:

Forton KevinORCID,Lamotte Michel,Gillet Alexis,Chaumont Martin,van de Borne Philippe,Faoro Vitalie

Abstract

Abstract Background Beta-blockers are increasingly prescribed while the effects of beta-adrenergic receptor blockade on cardio-pulmonary exercise test (CPET)-derived parameters remain under-studied. Methods Twenty-one young healthy adults repeated three CPET at the same time with an interval of 7 days between each test. The tests were performed 3 h after a random, double-blind, cross-over single-dose intake of placebo, 2.5 mg or 5.0 mg bisoprolol, a cardio-selective beta1-adrenoreceptor antagonist. Gas exchange, heart rate (HR) and blood pressure (BP) were measured at rest and during cyclo-ergometric incremental CPET. Results Maximal workload and VO2max were unaffected by the treatment, with maximal respiratory exchange ratio > 1.15 in all tests. A beta-blocker dose-dependent effect reduced resting and maximal BP and HR and the chronotropic response to exercise, evaluated by the HR/VO2 slope (placebo: 2.9 ± 0.4 beat/ml/kg; 2.5 mg bisoprolol: 2.4 ± 0.5 beat/ml/kg; 5.0 mg bisoprolol: 2.3 ± 0.4 beat/ml/kg, p < 0.001). Ventilation efficiency measured by the VE/VCO2 slope and the ventilatory equivalent for CO2 at the ventilatory threshold were not affected by beta1-receptor blockade. Post-exercise chronotropic recovery measured after 1 min was enhanced under beta1-blocker (placebo: 26 ± 7 bpm; 2.5 mg bisoprolol: 32 ± 6 bpm; 5.0 mg bisoprolol: 33 ± 6 bpm, p < 0.01). Conclusion The present results suggest that a single dose of bisoprolol does not affect metabolism, respiratory response and exercise capacity. However, beta-adrenergic blockade dose dependently reduces exercise hemodynamic response by lowering BP and the chronotropic response.

Publisher

Springer Science and Business Media LLC

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3