Evaluating the impact of a small number of areas on spatial estimation

Author:

Aswi Aswi,Cramb SusannaORCID,Duncan Earl,Mengersen Kerrie

Abstract

Abstract Background There is an expanding literature on different representations of spatial random effects for different types of spatial correlation structure within the conditional autoregressive class of priors for Bayesian spatial models. However, little is known about the impact of these different priors when the number of areas is small. This paper aimed to investigate this problem both in the context of a case study of spatial analysis of dengue fever and more generally through a simulation study. Methods Both the simulation study and the case study considered count data aggregated to a small area level in a region. Five different conditional autoregressive priors for a simple Bayesian Poisson model were considered: independent, Besag-York-Mollié, Leroux, and two variants of a localised clustering model. Data were simulated with eight different sizes of areal grids, ranging from 4 to 2500 areas, and two different levels of both spatial autocorrelation and disease counts. Model goodness-of-fit measures and model estimates were compared. A case study involving dengue fever cases in 14 local areas in Makassar, Indonesia, was also considered. Results The simulation study showed that model performance varied under different scenarios. When areas had low autocorrelation and high counts, and the number of areas was at most 25, the BYM, Leroux and localised $$G = 2$$ G = 2 models performed similarly and better than the independent and localised $$G = 3$$ G = 3 models. However, when the number of areas were at least 100, all models performed differently, and the Leroux model performed the best. Overall, the Leroux model performed the best for every scenario especially when there were at least 16 areas. Based on the case study, the comparative performance of spatial models may also vary for a small number of areas, especially when the data have a relatively large mean and variance over areas. In this case, the localised model with G = 3 was a better choice. Conclusion Detecting spatial patterns can be difficult when there are very few areas. Understanding the characteristics of the data and the relative influence of alternative conditional autoregressive priors is essential in selecting an appropriate Bayesian spatial model.

Funder

ACEMS

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3