Human parvovirus B19 nonstructural protein NS1 enhanced the expression of cleavage of 70 kDa U1-snRNP autoantigen

Author:

Tzang Bor-Show,Chen Der-Yuan,Tsai Chun-Chou,Chiang Szu-Yi,Lin Tsung-Ming,Hsu Tsai-Ching

Abstract

Abstract Background Human parvovirus B19 (B19) is known to induce apoptosis that has been associated with a variety of autoimmune disorders. Although we have previously reported that B19 non-structural protein (NS1) induces mitochondrial-dependent apoptosis in COS-7 cells, the precise mechanism of B19-NS1 in developing autoimmunity is still obscure. Methods To further examine the effect of B19-NS1 in presence of autoantigens, COS-7 cells were transfected with pEGFP, pEGFP-B19-NS1 and pEGFP-NS1K334E, a mutant form of B19-NS1, and detected the expressions of autoantigens by various autoantibodies against Sm, U1 small nuclear ribonucleoprotein (U1-snRNP), SSA/Ro, SSB/La, Scl-70, Jo-1, Ku, and centromere protein (CENP) A/B by using Immunoblotting. Results Significantly increased apoptosis was detected in COS-7 cells transfected with pEGFP-B19-NS1 compared to those transfected with pEGFP. Meanwhile, the apoptotic 70 kDa U1-snRNP protein in COS-7 cells transfected with pEGFP-B19-NS1 is cleaved by caspase-3 and converted into a specific 40 kDa product, which were recognized by anti-U1-snRNP autoantibody. In contrast, significantly decreased apoptosis and cleaved 40 kDa product were observed in COS-7 cells transfected with pEGFP-NS1K334E compared to those transfected with pEGFP-B19-NS1. Conclusions These findings suggested crucial association of B19-NS1 in development of autoimmunity by inducing apoptosis and specific cleavage of 70 kDa U1-snRNP.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3