Chromosome-level genome assemblies of two parasitoid biocontrol wasps reveal the parthenogenesis mechanism and an associated novel virus

Author:

Inwood Sarah N.,Skelly John,Guhlin Joseph G.,Harrop Thomas W.R.,Goldson Stephen L.,Dearden Peter K.

Abstract

Abstract Background Biocontrol is a key technology for the control of pest species. Microctonus parasitoid wasps (Hymenoptera: Braconidae) have been released in Aotearoa New Zealand as biocontrol agents, targeting three different pest weevil species. Despite their value as biocontrol agents, no genome assemblies are currently available for these Microctonus wasps, limiting investigations into key biological differences between the different species and strains. Methods and findings Here we present high-quality genomes for Microctonus hyperodae and Microctonus aethiopoides, assembled with short read sequencing and Hi-C scaffolding. These assemblies have total lengths of 106.7 Mb for M. hyperodae and 129.2 Mb for M. aethiopoides, with scaffold N50 values of 9 Mb and 23 Mb respectively. With these assemblies we investigated differences in reproductive mechanisms, and association with viruses between Microctonus wasps. Meiosis-specific genes are conserved in asexual Microctonus, with in-situ hybridisation validating expression of one of these genes in the ovaries of asexual Microctonus aethiopoides. This implies asexual reproduction in these Microctonus wasps involves meiosis, with the potential for sexual reproduction maintained. Investigation of viral gene content revealed candidate genes that may be involved in virus-like particle production in M. aethiopoides, as well as a novel virus infecting M. hyperodae, for which a complete genome was assembled. Conclusion and significance These are the first published genomes for Microctonus wasps which have been deployed as biocontrol agents, in Aotearoa New Zealand. These assemblies will be valuable resources for continued investigation and monitoring of these biocontrol systems. Understanding the biology underpinning Microctonus biocontrol is crucial if we are to maintain its efficacy, or in the case of M. hyperodae to understand what may have influenced the significant decline of biocontrol efficacy. The potential for sexual reproduction in asexual Microctonus is significant given that empirical modelling suggests this asexual reproduction is likely to have contributed to biocontrol decline. Furthermore the identification of a novel virus in M. hyperodae highlights a previously unknown aspect of this biocontrol system, which may contribute to premature mortality of the host pest. These findings have potential to be exploited in future in attempt to increase the effectiveness of M. hyperodae biocontrol.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3