Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics

Author:

Mahapatra Cuckoo,Naik Pranati,Swain Sumanta Kumar,Mohapatra Pratyush Paradarsita

Abstract

Abstract Background Regeneration studies help to understand the strategies that replace a lost or damaged organ and provide insights into approaches followed in regenerative medicine and engineering. Amphibians regenerate their limbs effortlessly and are indispensable models to study limb regeneration. Xenopus and axolotl are the key models for studying limb regeneration but recent studies on non-model amphibians have revealed species specific differences in regeneration mechanisms. Results The present study describes the de novo transcriptome of intact limbs and three-day post-amputation blastemas of tadpoles and froglets of the Asian tree frog Polypedates maculatus, a non-model amphibian species commonly found in India. Differential gene expression analysis between early tadpole and froglet limb blastemas discovered species-specific novel regulators of limb regeneration. The present study reports upregulation of proteoglycans, such as epiphycan, chondroadherin, hyaluronan and proteoglycan link protein 1, collagens 2,5,6, 9 and 11, several tumour suppressors and methyltransferases in the P. maculatus tadpole blastemas. Differential gene expression analysis between tadpole and froglet limbs revealed that in addition to the expression of larval-specific haemoglobin and glycoproteins, an upregulation of cysteine and serine protease inhibitors and downregulation of serine proteases, antioxidants, collagenases and inflammatory genes in the tadpole limbs were essential for creating an environment that would support regeneration. Dermal myeloid cells were GAG+, EPYC+, INMT+, LEF1+ and SALL4+ and seemed to migrate from the unamputated regions of the tadpole limb to the blastema. On the other hand, the myeloid cells of the froglet limb blastemas were few and probably contributed to sustained inflammation resulting in healing. Conclusions Studies on non-model amphibians give insights into alternate tactics for limb regeneration which can help devise a plethora of methods in regenerative medicine and engineering.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3