Genome-wide investigations reveal the population structure and selection signatures of Nigerian cattle adaptation in the sub-Saharan tropics

Author:

Mauki David H.,Tijjani Abdulfatai,Ma Cheng,Ng’ang’a Said I.,Mark Akanbi I.,Sanke Oscar J.,Abdussamad Abdussamad M.,Olaogun Sunday C.,Ibrahim Jebi,Dawuda Philip M.,Mangbon Godwin F.,Kazwala Rudovick R.,Gwakisa Paul S.,Yin Ting-Ting,Li Yan,Peng Min-Sheng,Adeola Adeniyi C.,Zhang Ya-Ping

Abstract

AbstractBackgroundCattle are considered to be the most desirable livestock by small scale farmers. In Africa, although comprehensive genomic studies have been carried out on cattle, the genetic variations in indigenous cattle from Nigeria have not been fully explored. In this study, genome-wide analysis based on genotyping-by-sequencing (GBS) of 193 Nigerian cattle was used to reveal new insights on the history of West African cattle and their adaptation to the tropical African environment, particularly in sub-Saharan region. ResultsThe GBS data were evaluated against whole-genome sequencing (WGS) data and high rate of variant concordance between the two platforms was evident with high correlated genetic distance matrices genotyped by both methods suggestive of the reliability of GBS applicability in population genetics. The genetic structure of Nigerian cattle was observed to be homogenous and unique from other African cattle populations. Selection analysis for the genomic regions harboring imprints of adaptation revealed genes associated with immune responses, growth and reproduction, efficiency of feeds utilization, and heat tolerance. Our findings depict potential convergent adaptation between African cattle, dogs and humans with adaptive genesSPRY2andITGB1BP1possibly involved in common physiological activities.ConclusionThe study presents unique genetic patterns of Nigerian cattle which provide new insights on the history of cattle in West Africa based on their population structure and the possibility of parallel adaptation between African cattle, dogs and humans in Africa which require further investigations.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3