Author:
Le Duc Quang,Nguyen Tam Thi,Nguyen Canh Hao,Ho Tho Huu,Vo Nam S.,Nguyen Trang,Nguyen Hoang Anh,Vinh Le Sy,Dang Thanh Hai,Cao Minh Duc,Nguyen Son Hoang
Abstract
AbstractWhole genome analysis for microbial genomics is critical to studying and monitoring antimicrobial resistance strains. The exponential growth of microbial sequencing data necessitates a fast and scalable computational pipeline to generate the desired outputs in a timely and cost-effective manner. Recent methods have been implemented to integrate individual genomes into large collections of specific bacterial populations and are widely employed for systematic genomic surveillance. However, they do not scale well when the population expands and turnaround time remains the main issue for this type of analysis. Here, we introduce AMRomics, an optimized microbial genomics pipeline that can work efficiently with big datasets. We use different bacterial data collections to compare AMRomics against competitive tools and show that our pipeline can generate similar results of interest but with better performance. The software is open source and is publicly available at https://github.com/amromics/amromics under an MIT license.
Funder
Vingroup Innovation Foundation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献