Transposable elements that have recently been mobile in the human genome

Author:

Autio Matias I.,Bin Amin Talal,Perrin Arnaud,Wong Jen Yi,Foo Roger S.-Y.,Prabhakar ShyamORCID

Abstract

Abstract Background Transposable elements (TE) comprise nearly half of the human genome and their insertions have profound effects to human genetic diversification and as well as disease. Despite their abovementioned significance, there is no consensus on the TE subfamilies that remain active in the human genome. In this study, we therefore developed a novel statistical test for recently mobile subfamilies (RMSs), based on patterns of overlap with > 100,000 polymorphic indels. Results Our analysis produced a catalogue of 20 high-confidence RMSs, which excludes many false positives in public databases. Intriguingly though, it includes HERV-K, an LTR subfamily previously thought to be extinct. The RMS catalogue is strongly enriched for contributions to germline genetic disorders (P = 1.1e-10), and thus constitutes a valuable resource for diagnosing disorders of unknown aetiology using targeted TE-insertion screens. Remarkably, RMSs are also highly enriched for somatic insertions in diverse cancers (P = 2.8e-17), thus indicating strong correlations between germline and somatic TE mobility. Using CRISPR/Cas9 deletion, we show that an RMS-derived polymorphic TE insertion increased the expression of RPL17, a gene associated with lower survival in liver cancer. More broadly, polymorphic TE insertions from RMSs were enriched near genes with allele-specific expression, suggesting widespread effects on gene regulation. Conclusions By using a novel statistical test we have defined a catalogue of 20 recently mobile transposable element subfamilies. We illustrate the gene regulatory potential of RMS-derived polymorphic TE insertions, using CRISPR/Cas9 deletion in vitro on a specific candidate, as well as by genome wide analysis of allele-specific expression. Our study presents novel insights into TE mobility and regulatory potential and provides a key resource for human disease genetics and population history studies.

Funder

National Research Foundation Singapore

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3