ASAP: a platform for gene functional analysis in Angelica sinensis

Author:

Wu Silan,Da Lingling,Xiao Qiaoqiao,Pan Qi,Zhang Jinqiang,Yang Jiaotong

Abstract

Abstract Background Angelica sinensis (Danggui), a renowned medicinal orchid, has gained significant recognition for its therapeutic effects in treating a wide range of ailments. Genome information serves as a valuable resource, enabling researchers to gain a deeper understanding of gene function. In recent times, the availability of chromosome-level genomes for A. sinensis has opened up vast opportunities for exploring gene functionality. Integrating multiomics data can allow researchers to unravel the intricate mechanisms underlying gene function in A. sinensis and further enhance our knowledge of its medicinal properties. Results In this study, we utilized genomic and transcriptomic data to construct a coexpression network for A. sinensis. To annotate genes, we aligned them with sequences from various databases, such as the NR, TAIR, trEMBL, UniProt, and SwissProt databases. For GO and KEGG annotations, we employed InterProScan and GhostKOALA software. Additionally, gene families were predicted using iTAK, HMMER, OrholoFinder, and KEGG annotation. To facilitate gene functional analysis in A. sinensis, we developed a comprehensive platform that integrates genomic and transcriptomic data with processed functional annotations. The platform includes several tools, such as BLAST, GSEA, Heatmap, JBrowse, and Sequence Extraction. This integrated resource and approach will enable researchers to explore the functional aspects of genes in A. sinensis more effectively. Conclusion We developed a platform, named ASAP, to facilitate gene functional analysis in A. sinensis. ASAP (www.gzybioinformatics.cn/ASAP) offers a comprehensive collection of genome data, transcriptome resources, and analysis tools. This platform serves as a valuable resource for researchers conducting gene functional research in their projects, providing them with the necessary data and tools to enhance their studies.

Funder

Guizhou University of Traditional Chinese Medicine Undergraduate Innovation and Entrepreneurship Training Program Project

National Natural Science Foundation of China

the University Science and Technology Innovation Team of the Guizhou Provincial Department of Education

the Guizhou Provincial Science and Technology Projects

the National and Provincial Scientific and Technological Innovation Talent Team of the Guizhou University of Traditional Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3