Abstract
Abstract
Background
The production of foie gras involves different metabolic pathways in the liver of overfed ducks such as lipid synthesis and carbohydrates catabolism, but the establishment of these pathways has not yet been described with precision during embryogenesis. The early environment can have short- and long-term impacts on the physiology of many animal species and can be used to influence physiological responses that is called programming. This study proposes to describe the basal hepatic metabolism at the level of mRNA in mule duck embryos in order to reveal potential interesting programming windows in the context of foie gras production. To this end, a kinetic study was designed to determine the level of expression of selected genes involved in steatosis-related liver functions throughout embryogenesis.
The livers of 20 mule duck embryos were collected every 4 days from the 12th day of embryogenesis (E12) until 4 days after hatching (D4), and gene expression analysis was performed. The expression levels of 50 mRNAs were quantified for these 7 sampling points and classified into 4 major cellular pathways.
Results
Interestingly, most mRNAs involved in lipid metabolism are overexpressed after hatching (FASN, SCD1, ACOX1), whereas genes implicated in carbohydrate metabolism (HK1, GAPDH, GLUT1) and development (HGF, IGF, FGFR2) are predominantly overexpressed from E12 to E20. Finally, regarding cellular stress, gene expression appears quite stable throughout development, contrasting with strong expression after hatching (CYP2E1, HSBP1, HSP90AA1).
Conclusion
For the first time we described the kinetics of hepatic ontogenesis at mRNA level in mule ducks and highlighted different expression patterns depending on the cellular pathway. These results could be particularly useful in the design of embryonic programming for the production of foie gras.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Barker DJP, Medical Research Council (Great Britain), Environmental Epidemiology Unit. Fetal and infant origins of adult disease: papers written by the Medical Research Council environmental epidemiology unit, University of Southampton. London: British Medical Journal; 1993.
2. Lucas A. Programming by early nutrition: an experimental approach. J Nutr. 1998;128(2 Suppl):401S–6S.
3. Massimino W, Davail S, Bernadet M-D, Pioche T, Tavernier A, Ricaud K, et al. Positive impact of thermal manipulation during embryogenesis on Foie Gras production in mule ducks. Front Physiol. 2019;10 [cité 13 déc 2019]. Disponible sur: https://www.frontiersin.org/article/10.3389/fphys.2019.01495/full.
4. Sellier N, Brillard J-P, Dupuy V, Bakst MR. Comparative staging of embryo development in chicken, Turkey, duck, goose, Guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. J Appl Poultry Res. 2006;15(2):219–28.
5. Lumsangkul C, Fan Y-K, Chang S-C, Ju J-C, Chiang H-I. Characterizing early embryonic development of Brown Tsaiya ducks (Anas platyrhynchos) in comparison with Taiwan country chicken (Gallus gallus domestics). Yildirim a, éditeur. PLoS One. 2018;13(5):e0196973.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献