Genome-wide identification of MBD gene family members in Eleutherococcus senticosus with their expression motifs under drought stress and DNA demethylation

Author:

Wang Shuo,Dong Jing,Zhao Xue-Lei,Song Xin,Long Yue-Hong,Xing Zhao-Bin

Abstract

Abstract Background Methyl-binding domain (MBD) is a class of methyl-CpG-binding domain proteins that affects the regulation of gene expression through epigenetic modifications. MBD genes are not only inseparable from DNA methylation but have also been identified and validated in various plants. Although MBD is involved in a group of physiological processes and stress regulation in these plants, MBD genes in Eleutherococcus senticosus remain largely unknown. Results Twenty EsMBD genes were identified in E. senticosus. Among the 24 chromosomes of E. senticosus, EsMBD genes were unevenly distributed on 12 chromosomes, and only one tandem repeat gene existed. Collinearity analysis showed that the fragment duplication was the main motif for EsMBD gene expansion. As the species of Araliaceae evolved, MBD genes also evolved and gradually exhibited different functional differentiation. Furthermore, cis-acting element analysis showed that there were numerous cis-acting elements in the EsMBD promoter region, among which light response elements and anaerobic induction elements were dominant. The expression motif analysis revealed that 60% of the EsMBDs were up-regulated in the 30% water content group. Conclusions By comparing the transcriptome data of different saponin contents of E. senticosus and integrating them with the outcomes of molecular docking analysis, we hypothesized that EsMBD2 and EsMBD5 jointly affect the secondary metabolic processes of E. senticosus saponins by binding to methylated CpG under conditions of drought stress. The results of this study laid the foundation for subsequent research on the E. senticosus and MBD genes.

Funder

Natural Science Foundation of Hebei Province

science and technology project of hebei education department

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3