NmTHC: a hybrid error correction method based on a generative neural machine translation model with transfer learning

Author:

Wang Rongshu,Chen Jianhua

Abstract

Abstract Backgrounds The single-pass long reads generated by third-generation sequencing technology exhibit a higher error rate. However, the circular consensus sequencing (CCS) produces shorter reads. Thus, it is effective to manage the error rate of long reads algorithmically with the help of the homologous high-precision and low-cost short reads from the Next Generation Sequencing (NGS) technology. Methods In this work, a hybrid error correction method (NmTHC) based on a generative neural machine translation model is proposed to automatically capture discrepancies within the aligned regions of long reads and short reads, as well as the contextual relationships within the long reads themselves for error correction. Akin to natural language sequences, the long read can be regarded as a special “genetic language” and be processed with the idea of generative neural networks. The algorithm builds a sequence-to-sequence(seq2seq) framework with Recurrent Neural Network (RNN) as the core layer. The before and post-corrected long reads are regarded as the sentences in the source and target language of translation, and the alignment information of long reads with short reads is used to create the special corpus for training. The well-trained model can be used to predict the corrected long read. Results NmTHC outperforms the latest mainstream hybrid error correction methods on real-world datasets from two mainstream platforms, including PacBio and Nanopore. Our experimental evaluation results demonstrate that NmTHC can align more bases with the reference genome without any segmenting in the six benchmark datasets, proving that it enhances alignment identity without sacrificing any length advantages of long reads. Conclusion Consequently, NmTHC reasonably adopts the generative Neural Machine Translation (NMT) model to transform hybrid error correction tasks into machine translation problems and provides a novel perspective for solving long-read error correction problems with the ideas of Natural Language Processing (NLP). More remarkably, the proposed methodology is sequencing-technology-independent and can produce more precise reads.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3