Long non-coding RNA pairs to assist in diagnosing sepsis

Author:

Zheng Xubin,Leung Kwong-Sak,Wong Man-Hon,Cheng Lixin

Abstract

Abstract Background Sepsis is the major cause of death in Intensive Care Unit (ICU) globally. Molecular detection enables rapid diagnosis that allows early intervention to minimize the death rate. Recent studies showed that long non-coding RNAs (lncRNAs) regulate proinflammatory genes and are related to the dysfunction of organs in sepsis. Identifying lncRNA signature with absolute abundance is challenging because of the technical variation and the systematic experimental bias. Results Cohorts (n = 768) containing whole blood lncRNA profiling of sepsis patients in the Gene Expression Omnibus (GEO) database were included. We proposed a novel diagnostic strategy that made use of the relative expressions of lncRNA pairs, which are reversed between sepsis patients and normal controls (eg. lncRNAi > lncRNAj in sepsis patients and lncRNAi < lncRNAj in normal controls), to identify 14 lncRNA pairs as a sepsis diagnostic signature. The signature was then applied to independent cohorts (n = 644) to evaluate its predictive performance across different ages and normalization methods. Comparing to common machine learning models and existing signatures, SepSigLnc consistently attains better performance on the validation cohorts from the same age group (AUC = 0.990 & 0.995 in two cohorts) and across different groups (AUC = 0.878 on average), as well as cohorts processed by an alternative normalization method (AUC = 0.953 on average). Functional analysis demonstrates that the lncRNA pairs in SepsigLnc are functionally similar and tend to implicate in the same biological processes including cell fate commitment and cellular response to steroid hormone stimulus. Conclusion Our study identified 14 lncRNA pairs as signature that can facilitate the diagnosis of septic patients at an intervenable point when clinical manifestations are not dramatic. Also, the computational procedure can be generalized to a standard procedure for discovering diagnostic molecule signatures.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3