Genomic analysis of Enterococcus faecium strain RAOG174 associated with acute chorioamnionitis carried antibiotic resistance gene: is it time for precise microbiological identification for appropriate antibiotic use?

Author:

Pongchaikul Pisut,Romero Roberto,Mongkolsuk Paninee,Vivithanaporn Pornpun,Wongsurawat Thidathip,Jenjaroenpun Piroon,Nitayanon Perapon,Thaipisuttikul Iyarit,Kamlungkuea Threebhorn,Singsaneh Arunee,Santanirand Pitak,Chaemsaithong Piya

Abstract

Abstract Background Preterm labor syndrome is associated with high perinatal morbidity and mortality, and intra-amniotic infection is a cause of preterm labor. The standard identification of causative microorganisms is based on the use of biochemical phenotypes, together with broth dilution-based antibiotic susceptibility from organisms grown in culture. However, such methods could not provide an accurate epidemiological aspect and a genetic basis of antimicrobial resistance leading to an inappropriate antibiotic administration. Hybrid genome assembly is a combination of short- and long-read sequencing, which provides better genomic resolution and completeness for genotypic identification and characterization. Herein, we performed a hybrid whole genome assembly sequencing of a pathogen associated with acute histologic chorioamnionitis in women presenting with PPROM. Results We identified Enterococcus faecium, namely E. faecium strain RAOG174, with several antibiotic resistance genes, including vancomycin and aminoglycoside. Virulence-associated genes and potential bacteriophage were also identified in this genome. Conclusion We report herein the first study demonstrating the use of hybrid genome assembly and genomic analysis to identify E. faecium ST17 as a pathogen associated with acute histologic chorioamnionitis. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. The occurrence of E. faecium ST17 raised the awareness of the colonization of clinically relevant E. faecium and the carrying of antibiotic resistance. This finding has brought the advantages of genomic approach in the identification of the bacterial species and antibiotic resistance gene for E. faecium for appropriate antibiotic use to improve maternal and neonatal care.

Funder

Faculty of Medicine Ramathibodi Hospital, Mahidol University

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Mahidol University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3