Genomic characterization of a nematode tolerance locus in sugar beet

Author:

Sielemann Katharina,Pucker Boas,Orsini Elena,Elashry Abdelnaser,Schulte Lukas,Viehöver Prisca,Müller Andreas E.,Schechert Axel,Weisshaar Bernd,Holtgräwe Daniela

Abstract

Abstract Background Infection by beet cyst nematodes (BCN, Heterodera schachtii) causes a serious disease of sugar beet, and climatic change is expected to improve the conditions for BCN infection. Yield and yield stability under adverse conditions are among the main breeding objectives. Breeding of BCN tolerant sugar beet cultivars offering high yield in the presence of the pathogen is therefore of high relevance. Results To identify causal genes providing tolerance against BCN infection, we combined several experimental and bioinformatic approaches. Relevant genomic regions were detected through mapping-by-sequencing using a segregating F2 population. DNA sequencing of contrasting F2 pools and analyses of allele frequencies for variant positions identified a single genomic region which confers nematode tolerance. The genomic interval was confirmed and narrowed down by genotyping with newly developed molecular markers. To pinpoint the causal genes within the potential nematode tolerance locus, we generated long read-based genome sequence assemblies of the tolerant parental breeding line Strube U2Bv and the susceptible reference line 2320Bv. We analyzed continuous sequences of the potential locus with regard to functional gene annotation and differential gene expression upon BCN infection. A cluster of genes with similarity to the Arabidopsis thaliana gene encoding nodule inception protein-like protein 7 (NLP7) was identified. Gene expression analyses confirmed transcriptional activity and revealed clear differences between susceptible and tolerant genotypes. Conclusions Our findings provide new insights into the genomic basis of plant-nematode interactions that can be used to design and accelerate novel management strategies against BCN.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3