Intrusion detection in cloud computing based on time series anomalies utilizing machine learning

Author:

Al-Ghuwairi Abdel-Rahman,Sharrab Yousef,Al-Fraihat Dimah,AlElaimat Majed,Alsarhan Ayoub,Algarni Abdulmohsen

Abstract

AbstractThe growth of cloud computing is hindered by concerns about privacy and security. Despite the widespread use of network intrusion detection systems (NIDS), the issue of false positives remains prevalent. Furthermore, few studies have approached the intrusion detection problem as a time series issue, requiring time series modeling. In this study, we propose a novel technique for the early detection of intrusions in cloud computing using time series data. Our approach involves a method for Feature Selection (FS) and a prediction model based on the Facebook Prophet model to assess its efficiency. The FS method we propose is a collaborative feature selection model that integrates time series analysis techniques with anomaly detection, stationary, and causality tests. This approach specifically addresses the challenge of misleading connections between time series anomalies and attacks. Our results demonstrate a significant reduction in predictors employed in our prediction model, from 70 to 10 predictors, while improving performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error (MdAPE), and Dynamic Time Warping (DTW). Furthermore, our approach has resulted in reduced training, prediction, and cross-validation times of approximately 85%, 15%, and 97%, respectively. Although memory consumption remains similar, the utilization time has been significantly reduced, resulting in substantial resource usage reduction. Overall, our study presents a comprehensive methodology for effective early detection of intrusions in cloud computing based on time series anomalies, employing a collaborative feature selection model and the Facebook Prophet prediction model. Our findings highlight the efficiency and performance improvements achieved through our approach, contributing to the advancement of intrusion detection techniques in the context of cloud computing security.

Funder

Deanship of Scientific Research, King Khalid University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based coagulant dosage prediction for extreme events leveraging large-scale data;Journal of Water Process Engineering;2024-09

2. Swarm optimized differential evolution and probabilistic extreme learning based intrusion detection in MANET;Computers & Security;2024-09

3. Expert Phishing Detection System;2024 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2024-07-04

4. Anomaly detection in multivariate time series data using deep ensemble models;PLOS ONE;2024-06-06

5. An empirical assessment of ML models for 5G network intrusion detection: A data leakage-free approach;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3