Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes

Author:

Gong Wen-Ping,Liang Yan,Ling Yan-Bo,Zhang Jun-Xian,Yang You-Rong,Wang Lan,Wang Jie,Shi Ying-Chang,Wu Xue-Qiong

Abstract

Abstract Background Tuberculosis is a leading cause of death worldwide. BCG is an effective vaccine, but not widely used in many parts of the world due to a variety of issues. Mycobacterium vaccae (M. vaccae) is another vaccine used in human subjects to prevent tuberculosis. In the current study, we investigated the potential mechanisms of M. vaccae vaccination by determining differentially expressed genes in mice infected with M. tuberculosis before and after M. vaccae vaccination. Methods Three days after exposure to M. tuberculosis H37Rv strain (5 × 105 CFU), adult BALB/c mice randomly received either M. vaccae vaccine (22.5 μg) or vehicle via intramuscular injection (n = 8). Booster immunization was conducted 14 and 28 days after the primary immunization. Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis. Results M. vaccae vaccination provided protection against M. tuberculosis infection (most prominent in the lungs). We identified 2326 upregulated and 2221 downregulated genes in vaccinated mice. These changes could be mapped to a total of 123 signaling pathways (68 upregulated and 55 downregulated). Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3K-Akt signaling pathway as most likely to be functional. Conclusions M. vaccae vaccine provided good protection in mice against M. tuberculosis infection, via a highly complex set of molecular changes. Our findings may provide clue to guide development of more effective vaccine against tuberculosis.

Funder

National Natural Science Foundation of China

National Key Program for Infectious Disease of China

Beijing Municipal Science & Technology Commission

Medical Science and Technology Youth Cultivation Program of PLA

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3