Ionizable drug delivery systems for efficient and selective gene therapy

Author:

Zhang Yu-Qi,Guo Ran-Ran,Chen Yong-Hu,Li Tian-Cheng,Du Wen-Zhen,Xiang Rong-Wu,Guan Ji-Bin,Li Yu-Peng,Huang Yuan-Yu,Yu Zhi-Qiang,Cai Yin,Zhang Peng,Ling Gui-XiaORCID

Abstract

AbstractGene therapy has shown great potential to treat various diseases by repairing the abnormal gene function. However, a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells. To be excited, the development of ionizable drug delivery systems (IDDSs) has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019 (COVID-19) in 2021. Compared with conventional cationic gene vectors, IDDSs can decrease the toxicity of carriers to cell membranes, and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures. Despite the progress, there remain necessary requirements for designing more efficient IDDSs for precise gene therapy. Herein, we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms. The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of pDNA and four kinds of RNA. In particular, organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity. We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future, and indicate ideas for developing next generation gene vectors.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delivery of nucleic acids using nanomaterials;Molecular Biomedicine;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3