Author:
Hu Cheng-Qing,Hou Tao,Xiang Rui,Li Xin,Li Jing,Wang Tian-Tian,Liu Wen-Jun,Hou Song,Wang Di,Zhao Qing-He,Yu Xiao-Xing,Xu Ming,Liu Xing-Kai,Chi Yu-Jing,Yang Ji-Chun
Abstract
Abstract
Background
Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed.
Methods
db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein–protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays.
Results
In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers.
Conclusions
PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A’s suppressive effects on hepatic gluconeogenesis and lipogenesis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Fundamental Research Funds for the Central Universities
Peking University People's Hospital
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
2. Chen Y, Wang X, Tao S, Wang Q, Ma PQ, Li ZB, et al. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res. 2023;10(1):37.
3. Stefan N, Cusi K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022;10(4):284–96.
4. Razavi M, Wei YY, Rao XQ, Zhong JX. DPP-4 inhibitors and GLP-1RAs: cardiovascular safety and benefits. Mil Med Res. 2022;9(1):45.
5. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–64.