Glycosylation-related genes mediated prognostic signature contribute to prognostic prediction and treatment options in ovarian cancer: based on bulk and single‑cell RNA sequencing data

Author:

You Yue,Yang Qing

Abstract

Abstract Background Ovarian cancer (OC) is a complex disease with significant tumor heterogeneity with the worst prognosis and highest mortality among all gynecological cancers. Glycosylation is a specific post-translational modification that plays an important role in tumor progression, immune escape and metastatic spread. The aim of this work was to identify the major glycosylation-related genes (GRGs) in OC and construct an effective GRGs signature to predict prognosis and immunotherapy. Methods AUCell algorithm was used to identify glycosylation-related genes (GRGs) based on the scRNA-seq and bulk RNA-seq data. An effective GRGs signature was conducted using COX and LASSO regression algorithm. The texting dataset and clinical sample data were used to assessed the accuracy of GRGs signature. We evaluated the differences in immune cell infiltration, enrichment of immune checkpoints, immunotherapy response, and gene mutation status among different risk groups. Finally, RT-qPCR, Wound-healing assay, Transwell assay were performed to verify the effect of the CYBRD1 on OC. Results A total of 1187 GRGs were obtained and a GRGs signature including 16 genes was established. The OC patients were divided into high- and low- risk group based on the median riskscore and the patients in high-risk group have poor outcome. We also found that the patients in low-risk group have higher immune cell infiltration, enrichment of immune checkpoints and immunotherapy response. The results of laboratory test showed that CYBRD1 can promote the invasion, and migration of OC and is closely related to the poor prognosis of OC patients. Conclusions Our study established a GRGs signature consisting of 16 genes based on the scRNA-seq and bulk RNA-seq data, which provides a new perspective on the prognosis prediction and treatment strategy for OC.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3