Doxorubicin and folic acid-loaded zinc oxide nanoparticles-based combined anti-tumor and anti-inflammatory approach for enhanced anti-cancer therapy

Author:

Gomaa Soha,Nassef Mohamed,Tabl Ghada,Zaki Somia,Abdel-Ghany Asmaa

Abstract

Abstract Background Zinc oxide nanoparticles (ZnONPs) have impressively shown their efficacy in targeting and therapy of cancer. The present research was designated to investigate the potential of ZnONP nanocomposites as a cancer chemotherapeutic-based drug delivery system and to assess the anti-tumor and anti-inflammatory effectiveness of ZnONP nanocomposites combination with systemic chemotherapeutic drugs doxorubicin (DOX) and folic acid (FA) in Ehrlich ascites carcinoma (EAC) tumor cell line both in vitro and in vivo. Methods Anti-tumor potential of ZnONP nanocomposites: ZnONPs, ZnONPs/FA, ZnONPs/DOX and ZnONPs/DOX/FA against EAC tumor cell line was evaluated in vitro by MTT assay. Anti-tumor and anti-inflammatory efficacy of ZnONP nanocomposites were analyzed in vivo by examination of the proliferation rate and apoptosis rate of EAC tumor cells by flow cytometry, splenocytes count, level of inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as liver and kidney function in EAC-challenged mice. Results In vitro results showed that ZnONP nanocomposites showed a high anti-proliferative potency against EAC tumor cells. Furthermore, the in vivo study revealed that the treatment EAC-challenged mice with ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA hindered the proliferation rate of implanted EAC tumor cells through lowering their number and increasing their apoptosis rate. Moreover, the treatment of EAC-challenged mice with ZnONPs/DOX/FA markedly decreased the level of IL-6 and TNF-α and remarkably ameliorated the liver and kidney damages that were elevated by implantation of EAC tumor cells, restoring the liver and kidney functions to be close to the naïve mice control. Conclusion ZnONP nanocomposites may be useful as a cancer chemotherapeutic-based drug delivery system. ZnONP nanocomposites: ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA regimen may have anti-inflammatory approaches and a great potential to increase anti-tumor effect of conventional chemotherapy, overcoming resistance to cancer systemic chemotherapeutics and reducing their side effects, offering a promising regimen for cancer therapy.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3