Automated breast volume scanner based Radiomics for non-invasively prediction of lymphovascular invasion status in breast cancer

Author:

Li Yue,Wu Xiaomin,Yan Yueqiong,Zhou Ping

Abstract

Abstract Purpose Lymphovascular invasion (LVI) indicates resistance to preoperative adjuvant chemotherapy and a poor prognosis and can only be diagnosed by postoperative pathological examinations in breast cancer. Thus, a technique for preoperative diagnosis of LVI is urgently needed. We aim to explore the ability of an automated breast volume scanner (ABVS)-based radiomics model to noninvasively predict the LVI status in breast cancer. Methods We conducted a retrospective analysis of data from 335 patients diagnosed with T1-3 breast cancer between October 2019 and September 2022. The patients were divided into training cohort and validation cohort with a ratio of 7:3. For each patient, 5901 radiomics features were extracted from ABVS images. Feature selection was performed using LASSO method. We created machine learning models for different feature sets with support vector machine algorithm to predict LVI. And significant clinicopathologic factors were identified by univariate and multivariate logistic regression to combine with three radiomics signatures as to develop a fusion model. Results The three SVM-based prediction models, demonstrated relatively high efficacy in identifying LVI of breast cancer, with AUCs of 79.00%, 80.00% and 79.40% and an accuracy of 71.00%, 80.00% and 75.00% in the validation cohort for AP, SP and CP plane image. The fusion model achieved the highest AUC of 87.90% and an accuracy of 85.00% in the validation cohort. Conclusions The combination of radiomics features from ABVS images and an SVM prediction model showed promising performance for preoperative noninvasive prediction of LVI in breast cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3