Identification of RAD17 as a candidate cancer predisposition gene in families with histories of pancreatic and breast cancers

Author:

Joris Sofie,Giron Philippe,Olsen Catharina,Seneca Sara,Gheldof Alexander,Staessens Shula,Shahi Rajendra Bahadur,De Brakeleer Sylvia,Teugels Erik,De Grève Jacques,Hes Frederik J.

Abstract

Abstract Background Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1. Therefore, we hypothesized that additional shared genetic etiologies might be uncovered by studying families presenting with both breast and pancreatic cancer. Methods Focusing on a multigene panel of 276 DNA Damage Repair (DDR) genes, we performed next-generation sequencing in a cohort of 41 families with at least three breast cancer cases and one pancreatic cancer. When the index patient with pancreatic cancer was deceased, close relatives (first or second-degree) affected with breast cancer were tested (39 families). Results We identified 27 variants of uncertain significance in DDR genes. A splice site variant (c.1605 + 2T > A) in the RAD17 gene stood out, as a likely loss of function variant. RAD17 is a checkpoint protein that recruits the MRN (MRE11-RAD50-NBS1) complex to initiate DNA signaling, leading to DNA double-strand break repair. Conclusion Within families with breast and pancreatic cancer, we identified RAD17 as a novel candidate predisposition gene. Further genetic studies are warranted to better understand the potential pathogenic effect of RAD17 variants and in other DDR genes.

Funder

Wetenschappelijk Fonds Willy Gepts of the UZ Brussel

the Stichting Tegen Kanker

the Fund Maaike Lars Trees of the Boudewijnstichting

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3