Evaluating the comprehensive diagnosis efficiency of lung cancer, including measurement of SHOX2 and RASSF1A gene methylation

Author:

Liu Jian,Bian Tingting,She Bin,Liu Lei,Sun Hui,Zhang Qing,Zhu Jun,Zhang Jianguo,Liu Yifei

Abstract

AbstractMethylation of the promoters of SHOX2 and RASSF1A (LungMe®) exhibits promise as a potential molecular biomarker for diagnosing lung cancer. This study sought to assess the aberrant methylation of SHOX2 and RASSF1A in broncho-exfoliated cells (BEC) and compare it with conventional cytology, histology examination, immunohistochemistry, and serum tumor markers to evaluate the overall diagnostic efficiency for lung cancer. This study recruited 240 patients, including 185 malignant cases and 55 benign cases. In our observation, we noted a slight reduction in the detection sensitivity, however, the ΔCt method exhibited a significant enhancement in specificity when compared to Ct judgment. Consequently, the ΔCt method proves to be a more appropriate approach for interpreting methylation results. The diagnostic sensitivity of cytology and histology was in ranged from 20.0%-35.1% and 42.9%-80%, respectively, while the positive detection rate of LungMe® methylation ranged from 70.0% to 100%. Additionally, our findings indicate a higher prevalence of SHOX2( +) among patients exhibiting medium and high expression of Ki67 (P < 0.01), as opposed to those with low expression of Ki67, but RASSF1A methylation did not show this phenomenon (P = 0.35). Furthermore, CEA, SCCA, and CYFRA21-1 showed positive detection rates of 48.8%, 26.2%, and 55.8%, respectively. Finally, we present a comprehensive lung cancer diagnostic work-up, including LumgMe® methylation. The combined analysis of SHOX2 and RASSF1A methylation serves as a powerful complement and extension to conventional methods, enhancing the accuracy of a lung cancer diagnosis with satisfactory sensitivity and specificity.

Funder

Nantong Municipal Science and technology project

Nantong Basic Research Plan Project

Research project on cutting-edge tumor support therapy

Jiangsu Provincial Research Hospital Hospital

Shanghai Pudong New District Foundation for Development of Science and Technology

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3